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DISC-O-TIC
A Discrete-Time Analytical Meta-Model
for Use in Combat Systems Studies
that Utilize High-Resolution Simulation Models

Patricia A. Jacobs
Donald P. Gaver

EXECUTIVE SUMMARY

This paper provides various models for extending or extrapolating in time, and
varying and enhancing in coverage capability, the output of a high-resolution simulation
model, here specifically but not exclusively, the Army’s COSAGE. The models we
propose, generically called DISC-O-TIC, which is short for “Discrete-Time Analytical
Meta-Model) are tailored to employ the discrete-time output of COSAGE and,
potentially, many other such models. The state variables of the two opponent forces are
the numbers of vehicles or platforms of a variety of types for both sides, measured at
regular (discrete) times only: e.g. 12-hour intervals, 1-day intervals, 2-day intervals, etc.
as selected by the analyst. The outputs are survivors of the battle and munitions expended
after a given number of combat days.

COSAGE output data has been made available by the Center for Army Analysis
(CAA) as (i) the total forces of each side, Red and Blue, by platform or vehicle type,
present at time O for each of several specified postures (in our specific numerical

examples we analyze Blue Attack vs. Red Hasty Defense), then followed (ii) by the




corresponding forces at time 2h =2 days =48 hours later. Data furnished concerning
engagement rates and kills by various platforms and weapons on each side allow one to
compute average engagement/shooting rates and estimated kill probabilities for the
various Red platforms vs. those of Blue, and vice versa, given the nature of the platform-
weapon-—target relation: the distinction between direct “aimed” fire and general “area”
fire. Targets are in principle vulnerable to both.

Several new discrete-time dynamic analytical/mathematical models have been fitted
to the above data by determining/estimating simple shooting and survival parameters
from the above data. These simple parametric representations, so-called meta-models, are
then used to compute/estimate, in spread-sheet format, future force sizes and
compositions that result from mutual attrition, as well as the corresponding expenditures
of ammunition. No explicit C4/ISR or Information Operations modeling has been carried
out, but such effects as are present in COSAGE simulations are implicitly represented in
the parametric representations proposed. It is then shown, for instance, that tactical-level
shooting doctrine can be modified with trivial changes in kill probability parameters in
the meta-models: changes from kill probabilities associated with single shots at acquired
targets, to salvoes, to shoot-look-shoot, etc., can be accomplished off-line and then
numerically inserted into the meta-model computations. This opportunity renders painless
certain kinds of tactical what-if analyses. For more detailed discussion see Appendix A,
Firing Options and Immediate (Imperfect) BDA

The meta-models are also capable of economically and efficiently representing likely
shooting-rate re-allocation to account for target attrition. The adjustments made are
speculative, or else related to that in ATCAL, an Army model analogous to those we
propose. We provide some numerical illustrations of these.

We can also represent dynamic feedback adjustment of fire rates that, if overdone,

could result in unstable, even chaotic, behavior.



Fitting analytical meta-models (DISC-O-TIC) and examination of the results as
compared to the COSAGE data for the initial 2-day calibration period can be instructive.
For example, in the current posture of Blue Attack and Red Hasty Defense the given
meta-models for Blue survivorship all tend to fit the COSAGE data better than do those
for Red. This is likely to be the result of far greater attrition of Red platforms than Blue
(relatively few Red survivors); small numbers of remaining targets tend to induce extra
shooting unless preventive steps are taken; this effect is noticeable on a suitable graph. A
second example has been noticed, in which COSAGE attrition was significantly greater
than that of the fitted model, is that of a Blue tracked, lightly-armored forward scouting
vehicle, the UM3CFV. The considerable vulnerability of this platform stands out when a
platform-by-platform plot of COSAGE vs. meta-modeled survivorship is examined.

It is strongly recommended that some form of meta-modeling be used to back up

every complicated simulation. Taking the results of complicated simulations at face value

without intensive diagnosis and critical scrutiny can be seriously misleading, particularly
if later users rely on the report that the tool has previously been used by others and

“therefore” need not be critically examined for a new application.




1. Introduction and Motivation

Under various circumstances it is natural to model combat attrition in discrete time,
i.e. in equal time steps of 1-day (24 hours) or even of 2 or 3-day durations. This is
because available data from higher-resolution tools, such as the Army’s COSAGE, may
be reported on a daily or less frequent basis, and also because realistically-sized model
studies, e.g. of theater-level campaign scale may require iterative computations
(optimizations, or goal programming) that are best performed on a fixed cycle schedule,
where the time steps are not too small. Attrition (or suppression) calculations must fit
smoothly into the overall model computation, which is often on a coarse time scale.

For example, work being carried out for J-8 to quantify ammunition consumption in
various postures involves a variety of computational operations, including different
attrition calculations, as time advances. Consequently it is efficient to allow initially for
rather sizable time steps, on the order of several days, to keep computational effort under
control.

Traditional combat/attrition modeling has overwhelmingly often been carried out in
“continuous time,” often using the language of differential equations; see Taylor (1983).
The best known of these are the classical Lanchester equations, which have been vastly
generalized (and roundly condemned, with some justification). Of course all but the
simplest combat situations prohibit use of “closed form” solutions to such equations, so
computational solutions have been developed; these actually are carried out by
discretizing time, often on a very fine scale. Numerical studies that involve accurate
solution of such equations can be quite time consuming, especially if they are only part of
a much bigger effort.

Both data availability and computational burden thus urge consideration of discrete-
time (daily, or several-day time step) model formulations for the present purpose. An

additional argument for such as these is that it is easier to enhance the simplest (discrete



time) models by introducing adaptive feedback from system states in the discrete-time
format, and also easier to accommodate certain stochastic effects, such as inter-agent
visibility, environmental and terrain influences, etc., than it is in continuous time (which
models must be discretized to compute with, in any case, as pointed out above). We carry
out some such enhancements in what follows, leaving others for future attention.

Finally, discrete-time models are often more easily understood by an audience

uncomfortable with the ideas of calculus: derivatives and integrals.

2. Model 1.1

We work in terms of state variables that count/enumerate the numbers of Red and
Blue opponents of various types and capabilities in each of several (sub)regions at times
0, h, 2h, 3h, ..., 37h, .... However, initially we discuss the simplest such model, one in
which a single-type Blue force is in combat with a single-type Red force. A simplified
deterministic “fluid approximation” presentation is given here, and made general in later

sections. A stochastic version is presented in Appendix A.

2.1 Stripped-Down Illustration: Discrete-Time Direct/Aimed/Allocated Fire

Begin by assuming that Red (enemy) and Blue (own) forces confront each other in a
region with unspecified dimensions (but only temporarily; generalization follows). The
forces are of the same type here, e.g. are both tank forces. During equal consecutive non-
overlapping time periods of duration % (e.g. single day, or consecutive several-day
periods) elements or the forces search for each other and exchange shots. Assume an
aimed/assigned fire discipline on both sides: at time ¢ (e.g. day, 3-day step) the Blue force
size B(2) is effectively divided by the number of Reds, R(?) (both {B(f)} and {R(¢)} are
treated here as deterministic fluids — the “mean field approximation” that can reasonably
approximate the mean of a Markov chain when numbers are large). Let B(t)/R(z) be the

number of Blues in a specified group that are assigned to each particular Red at the




beginning of period ¢ (fractional numbers are admitted and interpretable by assuming a
shooter processor-sharing strategy). Thus each Blue has his exclusive target list in period
t; re-assignments of live Shooters (Blue or Red) take place each period. On average, each
Red gets the attention of ~ B(#)/R(7) Blues during time period (¢, t + h); each Red thus may
experience B(t)/R(z) - npr(*)h shots, where ngp(*)h denotes the rate of shot-fire by each
member of a Blue subgroup, the “*” notation refers to the possibility of describing the
effects of other influential variables, such as the number of live Red targets: if that
number becomes small then the rate of fire at it might also be reduced.(as in ATCAL: see
Appendix D). If ngg(*) is taken to be the (constant) maximum acquisition and shooting
rate of a Blue, then the effective Blue shooting rate may potentially be unrealistically
large, meaning that many Shooters (Blue) simultaneously “pile on” a possibly hapless
victim (if the “victim” is already dead, or is a false target or decoy, the Shooters are
hapless, at least as represented by the first model of this type). Of course this is a possible
tactical option that is worth evaluation. It may be more munition-economical than the
“pile-on” option.

A complementary setup is assumed for Reds: each Blue is assigned a specific group
of R(#)/B() Red targets at the beginning of period t; the specific groups are disjoint, as
before, with R(#)/B(z) assigned to each Blue. This symmetry need not be the case, but is
assumed here: available data from simulations seen by these authors can support no more
detail. What-if exploration using the meta-model is relatively easy.

Suppose combat occurs: compute as though each side fires simultaneously (a
convenient assumption, given the basic data currently available). Postulate that a single
representative kill probability prevails for Red shooter vs. Blue targets, denoted kip, and
kgr for Blue shooter against Red target. Let the corresponding one-shot survival
probabilities be denoted by kzp = 1 — kgp and Xgg = 1 — kpg. These initial assumptions

will be relaxed subsequently to account for other sources of variability, in general



associated with the changing environment and both systematic and random/stochastic
many-source effects. However, it is currently impossible to assign “hard” numbers to
these effects since data are not available.

The probability that a single Red survives for one period is —IE;%*(')"B(')/ R('); corre-

spondingly, the probability that a single Blue survives is K pg (S)R()/B(),
Thus the expected number of Reds that survive a time period (z, ¢ + k) is the number

at t + h, so these equations result

R(t+h) = R(z)c ez I EO/RG) @.1)

B(t + 1) = B(¢)cpe RRO/E() 2.2)

(again, no reinforcements or withdrawals are modeled). Given the parameters, equations
(2.1) and (2.2) are easily solved recursively, e.g. on a spreadsheet, given the parameters
Kgr and Kgp, npr(*) and ngp(*) and initial forces B(0) and R(0).

The above roughly represents dynamic mutual attrition between two homogeneous
sectorized or “aimed-fire” forces Iin a fixed “basic” time period, e.g. one day under
coordinated aimed-fire conditions. It does not attempt to model the moment-to-moment
progress of a battle, but, given daily (say) data R(0), R(h), R(2h), R(3h), ...; B(0), B(h), ...
B(13h), ... one can deduce numerical values of the (daily or other period) average
parameters kpgr, krp, npr(*) and ngp(®), where the latter are treated as constants; other
options are candidates for exploration, but supporting data is non-existent. However, with
enhanced models, plausible, if speculative, doctrine may be investigated, and sensitivify
testing carried out. The “data” {R(jh), B(jh)} can come from runs of much higher
resolution models (e.g. COSAGE); some results of using such to “fit” the models are
reported subsequently. The “fitted” models are subsequently used to extrapolate the high-

resolution results.




See Appendix A for a (one of many possible) stochastic version of the above model.

2.2 Connection with Classical Lanchesterian Differential Equations
Suppose that the time step duration, £ — 0. Expand the exponential in two Taylor

terms, letting X ,, = 1-x,,

R(t+h)= R(t)’:l +npr(*)InKgr h—B(—t) + O(hz)]

R(?)

so, subtract R(#) and divide by & to find

- O(h?
R(t * h]z R(t) = nBR (.) ll'l E-BRB(I) + (h )
and in the limit as % tends to zero,
dR(t —
df ) = ngp(®)INK 5 B(1)

when B(2). is positive; otherwise the derivative must be taken to be zero, an important
boundary condition..

For small x ,, InX ,, =~ —x ,,, and

dR()

dr = =K prMgr (')B(t) (2.3,2)
and likewise
dB
dg’) = K pats (9)R(2) (2.3.b)

again, when the rhs is positive. The equations (2.3 a&b) are recognized as the classical
“square-law” Lanchester equations. It must be recalled that unless the shooting rates
nge(*) and ng, (0) are explicitly forced to depend on R(?) in (2.3,a) on B(?) in (2.3,b), with
the right-hand sides set equal to zero when R(f)=0, or B() =0, the equations are

incomplete and do not respeét physically appropriate boundary conditions; without



imposing these constraints “solutions” can go negative or exceed initial force levels! Such
conditions are automatically respected in (2.1) and (2.2) even if ny,(®) and ng,(e) are
taken as (often unrealistically) constant in (2.1) and (2.2) for large B(f) divided by small
R(@).

2.3 A Queuing Interpretation and Generalized Lanchesterian Results

It may be reasonable to conceptualize opponents as virtually “queuing up” for
detection and attack by each other. For the moment, consider a continuous-time (A — 0)
“fluid” model of such queuing. For instance, think of R(?), the surviving Reds, as being in
a virtual waiting (and service) line for B(f) Blue servers. Then, if one uses an analytical
approximation to queuing delay effect introduced by Rider (1976), and Agnew (1976),
and later discussed by Filipiak (1988),

dR(?) R(z)
—_ L e Blt) - 24,
a2 Tk o
service rate  queue + in-service
(Blue) (Red)
and likewise
dB(t) B(1)
— L _EoR(r) . —1 2.4.b
dr M 1+ B(t) @40
maximum N—
servicerate  queue + in-service
(Red) (Blue)

Such equations also arise in biomathematics, e.g. in enzyme kinetics, (also a combat

situation), and may take the more general form

drR(z) - B(1)-R()

R R(t)/Kz 2>
dB(r) R(r)- B(?)

iRy B(r)/Ks (23




where K and Kp are Michaelis-Menten constants; see Murray (1989). Their presence
allows further opportunity for fitting to experimental (simulation) data.
The virtue of this type of formulation is that it gracefully bridges the gap between a

target-rich environment, e.g. for B as in (2.4,a), when R is large:

dR
' 'd_gt- = —éBRB(Z‘) (2.6)

which yields the Lanchester Square Law of (2.3) above; if R is small, so Blue is target-
poor, i.e. Red targets are much less easily found and killed, we find (roughly)

dR(t
R0 < —gre(e)R(r) @)
which is the Lanchester Linear Law; here the appearance of the product, B()R(?),

represents the random contact rate between opposing force elements. Owing to the

smooth saturation of the shooter, the search-kill-rate f’fm < &g in the former equation is
smaller because more time is spent searching for and identifying targets before shooting.
Of course the same behavior may occur for Blue; but there may well be asymmetry

between force behaviors.
Now go in the time-honored Lanchester direction. Division of, say, (2.4,a) by (2.4,b)

gives

dR _&me (1+B)
dB - fRB (1+R) 28)

which, upon integrating, yields

e .U - L ORLATR)

2 2 Ere| 2 (2.9

a naturally blended version of the Square and Linear laws. The Michaelis-Menten

generalization of (2.5) is seen to produce

10



R2(1)+ ()_RZ(O) R(O)z_‘fﬂ[Bz(t)+B(t) B—Z(O—)JFB(O)J

R(t)-—=2- —’ -
2Kz 2Kz Erp | 2Kp 2K3 (2.10)

which allows further tuning between the “pure” laws. Generalizations are possible, see
Gaver and Jacobs (1997), but are omitted for the present. Taylor’s books (1980, 1983) are

basic sources for this topic.

2.4 Extra/Over-Variability in Model Response

The previous model types are not now, but can be made, explicitly responsive to
either systematic and explanatory/regression variables, or to random (“hidden”) sources
of variability within a scenario or posture. Among such system effectors can be range and
visibility conditions between Shooter and Target, and maneuvers taken to change these.
One approach to include these effects is to introduce a (one or more) parsimonious
parametric modifications of the survivor probability, i ; the latter may be patterned on
the medical-biological survivor-probability methodology, Cox and Oakes (1984), that
incorporates a hazard function, deterministic and/or random. This leads to introduction of
a revised survival probability

x(1) = ¢ Hret) @.11)

here h(t; x, &1)) is a (partially) random hazard rate. In classical military language this
resembles (but is complementary to and generalizes) a Killer-Victim Scoreboard; it is a
generalization that includes systematic observable explanatory variables, plus over-
variability from many causes. |
Example 1: Range/Distance Effects Explicitly Modeled

The data available to parameterize the type of model discussed, e.g. COSAGE output,

may well

11




(a) record dpr(?), a characteristic range between (segments of) the two forces (here
considered) at time ¢ = kh. Other things being equal (they will not be!) we anticipate that a

hazard component due to range alone can have the form

Ksr(t) =Kpr f(dpr) (2.12)
where the basic constant X'pz and the function, f (#), of distance are parameters to be
determined. This form allows the observed survival probability to be exactly matched at
two specific ranges, and be adjustably decreasing with increasing range, as dpg(?)
increases. Of course other explanatory variables such as terrain cover and its usage also
influence kill probability. Unfortunately, the information available from COSAGE at

present kill prevent explicit representation of such effects.

Example 2: Random Period-to-Period Variation

Think of R(z, &) as the expected or mean value of Red force size, conditional on
&(1), a random environmental effect that persists throughout the M period; for the moment
take {&(2), t= h, 2h, ..., } to be independently and identically distributed (iid); however,
the analytical/mathematical difficulties do not increase at all if the distributions of the
environmental effects are not identical, e.g. depend on time but remain independent. If the
&1)s are common to B(f) and R(f) throughout, as could represent common weather

conditions, then we can put, conditionally,

R(h,£(1)) = R(0)REprer()EO/R(O)
(2.13)
B(h,&(1)) = B(0)ig)a(*)+3(0)/R(O)

Remove the condition on &1) to obtain

12



R-( h) = R( O) Eg[ee(l)ngk(-)h(B(O)/ R(0))In%pr ] = R(O)‘P[n BR (o)h(B(O)/R(O)) Ink BR]
(2.14)
B(h)= B(0) Eg[ee(l)nkls(-)h(R(O)/B(O))ln?RB ] = B(O)q:[n zs(*)n(R(0)/B(0))Ink RB]

where ¥(*) is the Laplace transform of £(¢),
¥(s) = Ec[e~ ]
and where, in the present application,
§=—ngg (O)h(E(t)/E(t)) InX g
>0 since Inkgp <O.
On the fluid-approximation principle, see Appendix A, calculate
R(t+h)=R(r) Es[eew)m(-)h(f(r)/mt))lnm] = R(:)¥[nse(*)W(B(1)/R (1)) In x|

o (2.15)
B(t+h)=B(r) Es[ea(t+h)nRB(')h(R(t)/B(t))anRB] = E(I)\y[nRB(o)h(E(t)/ B(r)) lnERB]

Note that the above only focuses on the mean survivorship of each side. In fact, the
commonality of the &(r)-effect induces positive association or “correlation” between the
attrition rates.Operational implications of this phenomenon are not investigated for the
present.

Ilustration: Let {&()} be iid and Gamma, with mean 1 and shape parameter S,
0 < < oo, (variance 1/p). Then since

P
¥(s)= [1+ s/ﬂ] (2.16)

we obtain

o -5
R(t+h)= E(z)[l - nBR/(; )i (R(2)/B(t)In%s )J 2.17)

13




o -B
F(t+h)=F(t){l—B%—)B(R(t)/B(t)ln?RB)} : (2.18)

Numerical results are easily obtained using spreadsheet techniques. Statistical analysis of
data to support this model, i.e. to estimate the value of beta, has not yet been undertaken.
However, the model can be used as a what-if tool to study the numerical effect of a
plausible model change on survivability and munitions expenditure.

The dependence of the (mean) survivorship of Red and Blue is seen to be
systematically affected by the dispersion of the &()-distribution. The mean of that
distribution has been fixed at unity. If S becomes large ( — o) the variance (1/p) hence
standard deviation (1/ \/ﬁ) of &(r) becomes negligible, and the original model reappears.
If B is small, i.e. close to or below unity, the survivorship shape changes, and radically if
B<1: relatively high survivorship occurs for small effective values of killing rate
ngr(*)In K g , with relatively slower trail-off as -ngg(*)InX gz increases.

The above model can be generalized in various ways. For example, the &(r)-effect
applied to one side for several specified periods can represent the use of an obscurant or
gas (necessitating use of movement-inhibiting protection) during several days of the
campaign. This certainly tends to reduce the capability of the Shooters on the receiving
side of the obscurant. The effectiveness can be quantified in the present simplified model,
but is worth doing only if a realistic variety of weapon types is in operation. This more

realistic situation is a candidate for consideration in later work. .

3. Model 2: Multitype Shooters and Targets

We work in terms of state variables that count/enumerate the numbers of Red and
Blue opponents of various types and capabilities at times O, h, 2k, 3h, ..., 37h, ...
Note: high-resolution data by location in a (sub)region are often not reported as output in
existing simulation models (such as COSAGE), although the model itself evolves

spatially. Analytical opportunities are lost by hiding the spatial-temporal aspect of

14



combat from the COSAGE user. It is recommended that more such detail be made

available to the user/analyst.

3.1 State Variables
R(jr; ) = Number of Red platforms of type jr in region iz at time ¢

B(js;©) = Number of Blue platforms of type jp in region ip at time ¢

3.2 Parameters

Pe(jp, wg; 1) = rate of fire of weapon type wg from Blue platform type jp in
region ig during (¢, t + k]

Wzr(jB, Wg; Jr; 1) = fraction of weapons of type wg from platform of type jp fired at
Red platforms of type jr during the time interval [z, ¢ + A].

Ksr(jB, WB; JR) = probability of kill for Blue platform of type jp firing with
weapon wpg at Red platform of type jz

Note: Attrition need not be permanent (“kill”): by expanding the state space we
accommodate partial (e.g. mobility) kills, and perhapé, temporary psychological kills
(“suppression”); however, recovery from suppression is not explicitly modeled here, but
to do so is not difficult. Again, data support for this is not available explicitly from

current COSAGE data.

3.3 Aimed or Direct Fire

This model type is useful for representing the attrition of Red by Blue (and vice versa)
when Blue weapons can be allocated to exercise “aimed” or “direct” fire at batches of
Reds whose type and location is presumed known (visible either directly or indirectly) to
Blue shooters. Tank warfare is an example. The total shots capable of being fired at Red

targets of type jr by Blue platforms of type jp firing weapon wg in (¢, ¢ + h] is
Nir(js.wa; jr;t)= B(js:t)ps(in.wast)wer(jz, ws; jr:t)h

3.1
= B(jB;t)[nBR(jB,WB;jR;t)h]

15




In words, ngr(*)h is the number of shots capable of being fired by an individual type ja
Blue platform at r against Reds of type jr during (¢, ¢ + h]. The number of Reds of type jr
at time ¢ + & (no reinforcements) is obtained by the argument of Section 2 preceding: the
basic notion of aimed or direct fire is, here, that a certain number of the total shots fired
by a platform in a given category is allocated to each single Red unit, type jr- Only a
subset of Blues is allocated to each of a particular subset of Red (Blues do not target
totally at random, nor do Reds). In the present deterministic/fluid-like approximation this
suggests that each one such Red is the target of a potential Np(j, wg; jr; 1)/R(j; 1) shots.
The probability that such a target survives for one h-period is

Npr(js.waijrit)/R(jr:t)

S(jr;t)= H (I—KBR(jBaWB;jR))

JB WB

= HH?BR(J.B s WB; J'R)B(js:l)nsk('vfs'ws?fk i)k R(jrit)

JB wsg

(3-2)

from which come the survival recurrences (assuming both sides behave in the same way).

Model 2.1:

B(jp;t+h)=B(jp;t)S(js;?) (3.3,2)

R(jr;t+h) = R(jr;2)S(jr:1) (3.3,b)

where the probability of a Red of type jr surviving aimed fire (AF) for one time unit, 4, is
thus given by the right-hand side of (3.2). An equivalent formula holds for Red DF vs.
Blue. We now abbreviate the number of shots per Blue at a Red jr as np(e, jg, wa; jr; 1).
As before, in Section 2, we use the “»” to indicate an unspecified (to-be-specified, but
otherwise taken to be constant, usually representative of the first few days of COSAGE
data) dependence of the number of shots on either deterministic or stochastic sources of

variation.
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3.4 Firing Rate Allocation
As remarked in Section 2, it is not satisfactory or realistic to let a firing rate, e.g. of

| Blue weapon wg from a platform type jg, against a Red of type jg, i.e.

ner(jz.wa; jrt)
remain constant over time, as opponent numbers change (decrease only in this model): if
B(jp; £) becomes relatively large compared to R(jk; f) then an unrealistic number of shots
may be fired at a Red target — one that in practice is either already dead, or may have
moved!

The numbers of shots of various types fired at a perceived-alive target are actually
decision variables. The decision is guided by rules of doctrine, and training, but must rely
in real life on a tank commander’s individual skill and perceptiveness. Our present
models do not directly account for variability of operator performance. In the context of
the current model type, and others more detailed and high-resolution, we will suggest and
test some rules that behave with qualitatively correct properties. For the first model we
simply take firing rates as constants, estimated from data (COSAGE). This assumption is
subsequently modified.

Some Shot Allocation Rules

The “historical” COSAGE run record, of 2h=48 hours’ duration for this report’s
sample data set has been analyzed to develop estimates of shooting rates and kill
probabilities for platform-weapon combinations against specified target types.

As noted, in the first model the above rates and probabilities are not altered (they
remain constant) over time: the same shooting rates per specified Blue Shooter vs. Red
target, and vice versa are assumed to prevail throughout: these are the Shooter vs. Target
ratc;,s that characterize the initial 48 hours of the COSAGE simulation data. It is justifiable

to question this assumption, since presumably total rate of fire directed at individual
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targets will diminish as the number of targets per assigned shooters decreases. This may

occur because of increased difficulty of acquiring alive eligible targets.

Here are some rules:

(a) Initial (0,2h] = 48 hour shooting rates per shooter maintained throughout the elapsed
battle time.

(b) Initial shooting rates redistributed each time period across alive targets, in same
proportion as during initial period (0, 2h].

(c) Initial shooting rates redistributed each time period in proportion to number of
surviving targets in each target class. The redistribution need not be proportional but
can be some general or weighted function that is selected for control purposes.

(d) Initial shooting rates redistributed according to the perceived lethality (against
appropriate associated shooter platforms) of each target class. Approximately and
myopically: weight the surviving numbers of each target class by the probability of
kill, or rate of kill, against its shooter-class targets. In short, a shooter of either side
may well tend to shoot first at its currently most dangerous opponent.

(e) Initial gross shooting rates maintained constant in each subsequent shooter-target
pairing. This is equivalent to applying the logic of the ATCAL model assumptions in
each time period; see Chap. 6, expression (6.2.1) of Caldwell, ef al. (2000). In turn,
this amounts to adjusting the engagement-killing rate so as to keep the target type
attrition rate constant during each day of the battle, which leads to an exponential
decrease in targets throughout the battle.

Comments: There appears to be no basic reason why such a rule is especially natural
or “optimal”. It does appear to be part of one standard Army analytical tool, namely
ATCAL, and hence is worth examination in the present context. It implies a certain
shooter restraint: if the number of shooters vs. members of a clasvs of alive targets

becomes greater than was the case initially, then the shooters’ shooting rate is reduced so
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that the original shooting-killing rate prevails in the new time interval. This may be
qualitatively plausible in some rough sense. Why the adjustment to achieve exponential
decrease of target forces might be descriptive of real combat remains mysterious.

The basic direct-fire allocation of Blue platforms to Red targets in the present model
begins by assigning a set of Blue platforms exclusively to a particular set of Reds.
Consequently, not every Blue platform in the situation represented can acquire or shoot at
any Red platform; there may be different assignments throughout a basic period of
duration h (e.g. a day), but it is presently assumed that those assignments are respected.
Given the data available, it is the basic current assumption that, during period (z, #+h)
each Red of type jr is a candidate to experience shots from some Blues of type ji: e.g.
during period 7 (e.g. day ¢ to #+h) each Red of type jr receives on average Blue shots of
weapon type wp from platforms of type jp that number

Zn(',jBaWB;jR;t)B(jB;t)

) . 4
during time period (2, +h) R(jr;?) G4

Blue wg shots at a Red of type jg

Data available from COSAGE runs provides the possibility of calculating/estimating the

initial shooting rate of a Blue type jp against a Red target, type jr: V

# of wy, -shots by all B(j,;,0) in (0,4)
B (] B ’O)

The rate of shooting is very likely to be strongly dominated by the rate of target

. 3.5)

ﬁ(-,jB,wB,jR;h)=

acquisition: the time between shots is mainly the time between successful detection,
acquisition, and classification (or misclassification) of a target; the actual shooting time

(weapon firing and delivery on target) is negligible by comparison.

3.5 Poisson Shooting-Rate Model: Model 2.2
Invocation of the Poisson process, Feller (1968), provides a plausible and useful next-

stage model that incorporates stochastic/chance variability into target acquisition and
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shooting. During a generic period (¢, t + k) a group of Shooter platforms allocated to fire
specified weapons at a specified target type search for their quarry in such a way that the
number they find is random (realistically), and is governed by a Poisson random process.
If the Shooter is of type ;s and the quarry of type Jo (here if Q = B, § = R, while otherwise
Q =R, S=B) the random number found, per Shooter of type js in (¢, t+ &) has the
Poisson distribution with rate Aso(*, s, Jo); if the Poisson random version of nso(*, js, jo)h

has mean Asg(*, s, Jo)h then it can be shown that (3.3) is replaced by (3.6,b) below, with

=Y. Ars(%.jr.Wrsje )k e (jr.wrijB N(R(jr:t)/B(js.1))
B(jp,t+h)=B(jp,t)e **¥ (3.6,2)

and

=X 3 Asr(%.js.wasjr )k xpr(js.Wa:jr XB(jz.t)/R(jr.1))
R(jr,t+h)=R(jr,t)e #** . (3.6)b)

Here we have incorporated the fraction of different weapons shot by the same platforms
directly into the parameterized search rate. As before, the symbol “»” denotes the possible
dependence of the acquisition latency on other explanatory variables, such as location,
range, previous acquisitions experienced, etc. These variables are not included here

because they cannot be obtained from current COSAGE data.

4. Connection with COSAGE Data

Note that the raw output of COSAGE data currently made available aggregates Red
(and Blue) force types over their various locations.

COSAGE data from actual runs, or other historical data, may give numerical values
for the fraction, apg of weapons of type wp historically fired by Blues, type j, vs. Reds,
type jr, and vice versa. The data allows empirical determination of the systems’ attrition
power.

An alternative is to (eventually) simulate rule-based adaptivity: the rate of fire at a

given batch of Red targets, e.g. tanks at a certain location, may be made much higher than
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at APCs at another loéation; this can be achieved by adjusting the functional form of
a@sr(jB, WB; jr); the latter can, and should, depend on (currently unmodeled) availability of
ammunition in various categories, and of course the presumed threat of the different Red

target batches.

4.1 Adapting the Model to Easily Utilize COSAGE Data
Models used to estimate the expected number killed in direct fire using parameter

estimates from COSAGE are summarized below.

Notation
R(jr, ¥) = Number of Red shooters of type jr at time ¢
B(jg, 1) = Number of Blue targets of type j at time ¢

Nrs(ir, wr; jg, ©) = (Mean) number of shots fired by all Red shooters of type jr using
munition wg, at all Blue targets of type jz during period (0,7]

Ner(jz, wg; jr, ) = (Mean) number of shots fired by all Blue shooters of type jp using
munition wp at all Red targets of type jz during period t: (0,]

2h = number of days of combat represented in the COSAGE run

r the number of COSAGE replications; often 16.

nre(r, Wr; jg, )= Nrp(jr, Wr; js, 2h)/R(jr; 0)2h =Ars(jr, wr; Jg)
ngr(js, Wg; jr, )= Npr(jz, wg; jr, 2h)/B(js; 0)2h = px (JB.ws; jr)

Krp(jr, Wr; j, t) = (Mean) number of Blue targets of type j killed by shots fired by
all Red shooters of type jg using munition wg during (0,7]

Ker(jB, ws; jr, ) = (Mean) number of Red targets of type j killed by shots fired by
all Blue shooters of type jp using munition wp during (0,¢]

Krs(jr,wr; jp 2h) +.1_ Bayesian estimated probability of
’%RB(].R:WR;].B)z ; = kill of Blue type jz by Red 4.1)
Nz ( JrWr; jB ,2h) +=  platform, type jr gsing weapon'
r type wg . Uses uniform (0,1) prior
for the probability of kill
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Ksx(js,wp: jr.2h)+~  Bayesian estimated probability of
Ksr(JjB.ws; jr)= I — kill of Red type jr by Blue 4.2)
NBR( jB.wgs jr ,2h) +Z=  platform, type jp using weapon
r type wg . Uses uniform (0,1) prior
for the probability of kill

First model: Model 2.1

Rates of fire observed during (0,2%] in COSAGE are used for all future times. The

same for kill probabilities. Both are estimated as described under Notation above.

B(jn.t +h) = B(js )L (1- Kr(n, was jg)) /Um0 43)

JR

Poisson model: Model 2.2

B(jg.t+h)= B(js.t)[ [ exp{-2Ars(ir-wr: js )i rs(jr.Wr; js)R(jr.t)! B(js.1)} (4.4)

JR

Expected number kills model: Model 2.3

B(jp.t+h)=B(jg.?) ~2nRB(jR,WR;jB )R(jr.t)hk R (jr,Wr; jB) 4.5)
Jr

if B(jg,t+h)>0 and O otherwise.

Fluid gueuing model: Model 2.4

B(jz,?)

B(jg,t+h)= B(jB,f)—anB(jR,WR;jB)R(jR,t) T+ B(js.1) hxrp(jr.WrsjB)  (4.6)
B>

Jr
if B(jg,t+h)>0 and 0 otherwise.

Random Environment Gamma model: Model 2.5

B(jg.t+h)=B(js.)[]

Jr

B

Figures/graphs to be presented graphically present the COSAGE data plotted vs.
the fitted models. These are results comparing the average number of LIVE platforms

surviving from COSAGE and projected by the above models for each platform. Such
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graphs are useful diagnostic tools that can reveal anomalies in data (and point out
programming errors!). COSAGE summary output reports summary statistics averaged
over a specified number of replications. For aimed fire weapons the statistics include the
average number of weapons of type w fired by platform of type j at a target of type k and
the average number of targets of type k killed by weapons of type w fired by platforms of
type j for a 2-day period. Also specified are the initial numbers of Red and Blue
platforms, the number of replications and the combat posture. The kill probability of a
single aimed fire weapon wp fired by a Blue platform of type jp against a jz Red in
situation s can be estimated from the COSAGE output as follows.

Let K, BR( JgsWg.J R;s) be the average (e.g. over 16 replications) number of Reds of type

Jr killed by aimed fire weapon wp fired by Blue platforms of type jp for the two-day
period during posture s. Let Npg(jz,ws; jr;s) be the average number of aimed fire
weapons wp fired by Blue platforms of type jp at Reds of type jg for the two-day period
during posture s. In aimed fire each weapon is assumed to be able to affect exactly 1 Red
target; we ignore weapons fired at already killed targets. An estimate of the kill
probability of a single aimed fire weapon, type wg, shot by a Blue of type jz against a JR
Red in posture s during the two-day COSAGE run is

Kr(jz.ws; jr; )

NANE ; . 4.8)
NBR(JB,WB;JR;S)

'K'BR(]'B,WB;J'R;S)=

(Note: this is actually the maximum likelihood estimate of a binomial model’s kill
probability, here xgr(jp, wa; jr; 5). It is scenario-specific, and range or other condition
dependence is not specified.)

Now to avoid having to estimate a kill probability as 0 owing to small-sample bad
luck we replace K, /N, by a Bayes estimate that assumes kills are binomial and applies
a uniform prior (one can use a more informative prior if one is available); the result is the

estimate of kill for Red of type jz when fired upon directly by Blue of type jz using
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weapon type wp during phase s; if r is the number of COSAGE replications (e.g. 16); the
Bayes probability of kill for a single shot is

= . . 1

KBR(JB,WB;]R;S)+—

Ker(js.ws; jr;s)= — 5 . (4.9)
NBR(jB,WB§jR§S)+7

Thus, the probability a particular Red survives a shot is

= /. . 1

N Ksr(js,ws; jr;s)+—

Kr(Jjp, w3 jr;S)=|1-— ; (4.10)
NBR(fB,WB;jR;S)+‘;

4.2 Area or Unaimed Fire: Model 3.1
Suppose certain weapons fire in an unaimed area-fire manner. Then (4.3) must be
modified to reflect the way that any shot places any Red target, type jx, in location ix at
risk. One formula will handle this for each phase/stage s; put
S(jrst)= HH(1—KBR(jB,wB;jR))N”(')/ R (4.11)
JjB ws
where

1 if weapon B is aimed;
O(wz) = (4.12)

0  if weapon B is area.

and Npgg is defined in (3.1). Of course the corresponding kill probabilities must be made
weapon-specific. It is even possible to let the indicator &-) depend on other features of
combat, such as distance, general terrain features, visibility, etc., and to let &) take on
values other than O or 1. There is currently no information quoted from COSAGE runs to

permit such refinements. This represents a lost opportunity for learning.
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4.3 Using Available COSAGE Data to Estimate Survival for Area Fire Weapons

In this section we provide formulas for the effect of indirect or area fire analogous to
(3.3,a), (3.3,b), (3.6,a), and (3.6,b) for aimed fire. We use only data now available from
COSAGE runs, so the footprint-that-affects-several-targets effect must be inferred
indirectly. No doubt the process used here can be improved, but the method necessarily
uses data presently available from a detailed “realistic” model, COSAGE, to “fit” a much
cruder model: simple recurrences (3.3,a) and (3.3,b).

The argument below applies to a generic area-fire situation; it is easily made specific.

There are R Red targets, all of the same type (e.g. tanks), and all equally vulnerable to
Blue weapons. Let there be Sp Blue indirect-fire weapon shots of specified type aimed
into the region where the Reds reside. Let « be the probability that a Red (target) is
affected (e.g. susceptible or exposed to being killed, but possibly damaged or suppressed
within a footprint) by a Blue indirect weapon shot. Let the indicator function I;(i) = 1 if
the i shot affects the target number j; otherwise I;(i) = 0. Then the total number of targets
affected by indirect weapons during a replication of COSAGE is the sum

Sz R
M:;;I,-(i), (4.13)

a random variable, the observed value of which on replication k is ndk), k= 1,..., r. Now
assuming symmetry over the area fired upon, E[Ij(i)] = o for each shot and target
(possibly more plausible if all shots are fired simultaneously so that targets do not move).

Thus

E[N;]=SsRa (4.14)

and so we can estimate & by moments:

7, =%;nf(k); (4.15)
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consequently an estimate of xis @ =# i / SpR; the number of shots Sp is estimated by the
average of the number of shots observed during the r replications of 48 hours of
COSAGE combat.

Suppose £ is the probability that an affected (within footprint) target is killed. The
probability that a particular target is killed is thus o (first affected, then killed); the
probability of surviving one shot is the 1 — o for any target (symmetry). Assume now that
the probability that a single target survives (all) S shots is (1 — a&)°; this is perhaps more
plausible if the target cannot, or does not, move. In that respect it is a lower bound on a
particular target’s survival. Put x,(a) = o.

COSAGE records the average number of targets killed by the indirect fire weapons

over the r (often r = 16) replications: kg (2) for Red, while R(0) is the initial number of

Reds. By symmetry and the method of moments put

kr(2)=R(0)Spx,,(a) (4.16)

from which the probability that any Red is killed by a single Blue shot is estimated as

kr(2)
RO)S, (4.17)

Ky(a)=

where Sp is the average number of indirect-fire (Blue) weapons shot during the r

replications.

To avoid having to estimate a survival probability as 1 owing to small-sample luck we
replace kg(2)/ Sy R(0) by a Bayes estimate that assumes kills are binomial and applies a
uniform prior; the result is the estimate of survival for Red when fired upon indirectly by

Blue, using weapon type wy: if r is the number of replications (e.g. 16),

2 R ER(2)+1/I'
K'BR(WB,]R)—'(I ———_R(O)§3+2/r) (4.18)
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where Sy = B(O)ngg(-) since the above applies to Blue shooting at Red. A symmetrical

formula holds when Red is indirectly shooting at Blue.

5. Numerical Illustrations

We provide a number of graphical displays of COSAGE-data supported survivorship
and Munitions expenditures by various platforms. Fitted meta-models are compared to
COSAGE data for the two-day time period for which COSAGE data is available for the
posture Blue attack-Red hasty defense. Then comparisons between model types are
displayed. The model types considered are the Classical Survival Model 1 (4.3), the
Poisson Acquisition model (4.4) and an ATCAL-like attrition model (D.4) and (D.8).
Comparison of Figures A.2 and B.2 show that the Classical Survival Model 1 summarizes
COSAGE number of platforms surviving results for the Blue forces better than for the
Red Forces. In this scenario, the Red forces suffer greater attrition than the Blue forces.
Classical Survival Model 1 tends to underestimate the number of surviving platforms.
The Blue platform with the largest negative discrepancy in Figure A.2 is Platform 25
which is the UM3CFV, a lightly armored tracked forward Blue scouting vehicle that
suffers greater attrition in the Classical Survival Model 1 than in COSAGE. Figures C.1
and C.2 display the amount of Blue munitions used and the number of Red surviving
platforms after 8 days for the Poisson acquisition model versus the classical survival
model. The Poisson acquisition model tends to predict more munitions used for fewer
Reds killed. Figures D.1 and D.2 compare the amount of Blue munitions used during 8
days for classical survival model 1 and the Poisson acquisition model with and without
proportional reallocation of fires as specified in equation (E.1) of Appendix E. Not
surprisingly, the re-allocation of fire results in more Blue munitions being used. However,
the effect is greater for Classical survival model 1 than for the Poisson acquisition model.

Figures E.1 and E.2 compare the number of surviving Red platforms after 8 days for the
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classical survival model 1 and the Poisson acquisition model. As expected the weapon
reallocation results in a few more Red platforms being attrited. Once again, the effect is
more extreme for the classical survival model 1. Figures F.1 and F.2 display the number
of Blue munitions fired during 8 days and the number of Red platforms surviving after 8
days for the classical survival model 1 and the ATCAL-like model described in Appendix
D. The ATCAL-like model tends to predict fewer Blue munitions expended during the 8
days than the Classical Survival model 1. The ATCAL-like model tends to predict fewer
Red platforms surviving for those Red platforms that have a relatively large number
surviving in Classical Survival model 1. If Classical Survival Model 1 predicts a small
number of Red platforms surviving, then the ATCAL-like model tends to predict a
somewhat greater number of platforms surviving.

As they are currently fit to the particular COSAGE-model posture, none of the meta-
models differ enormously in their implications. This can change, for example, if the meta-
models are numerically parameterized differently, i.e. if the Random Environment model
(4.7) is used with the value B small, or if the ATCAL tuning parameter f is altered. The
models require exploration that shows which have the most conservative but realistic

assessment of kill rate for munitions expended.
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A.2 Classical Survival Model 1 vs. COSAGE Survival, Normalized
Difference for Blue
(No reallocation)
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A.3 Classical Survival Model 1 vs. COSAGE Munitions Expenditure: Blue
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B.2

Fraction
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C.2 Red Survivors in 8 Days: Classical Survival Model 1 vs. Poisson

Number of surviving Red platforms in Polsson acquisition

mode!

Acquisition, Model 2

2500

2000

1500

g

500

Number of Surviving Red Platforms after 8 days
Poisson Acquisition, Model 2 versus Classical survival, Model 1

500 1000 1500 2000
Number of surviving Red platforms in classical survival, model 1

34

2500




D.1
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Munitions Used by Blue in 8 Days: Classical Survival, Model 1, with
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D.2 Munitions Used by Blue in 8 Days: Poisson Acquisition, Model 2 with
Proportional Reallocation vs. Poisson Acquisition, Model 2, No
Reallocation
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E.1 Red Survival in 8 Days: Classical Survival, Model 1, with Proportional
Blue Reallocation vs. Classical Survival, Model 1, No Blue Reallocation
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E.2

Number of surviving Red platforms Poisson

Red Survival in 8 Days: Poisson Acquisition, Model 2, with Proportional
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F.1 Red Survival in 8 Days: Classical Survival, Model 1, with ATCAL-like
Time-Varying Acquisition Rate vs. Classical Survival, Model 1, No
Acquisition Rate Change
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F.2

Number of munitions used in ATCAL-like model

Munitions Used by Blue in 8 Days: Classical Survival, Model 1, with
ATCAL-like Time-Varying Acquisition Rate vs. Classical Survival,
Model 1, No Acquisition Rate Change
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Appendix A
Stochastic Discrete-Time Models

The previous pages of this report describe a deterministic or “fluid approximation”
model, albeit between multi-type forces. Here we show how a related stochastic model
can be formulated. Further elaborations are possible, and will be presented subsequently.

The following stochastic state variables describe the situation.

R(t) = Random variable denoting number of Reds at beginning (or selected

moment) during period ¢ = multiple of 4> 0:t=0, h, 2h, ..., 13h, ... A1)

B(r) = Random number of Blues corresponding.

Treat the co-evolution of {R(f), B(?), t =0, h, 2h, ...} as a Markov chain.

R(t+h) = Rs(r) (A2)

B(t+h) = Bs(®
where Ry(f), Bs(f) are the random numbers of survivors of period ¢ that are available for
conflict in the subsequent period of duration (k); the state of the system at the beginning
of period ¢ is (R(2), B(t)), and it evolves to (Rs(z), Bs(?)) at the end of that period, which
defines the state at the beginning of périod t + h, and so on.
Poisson Acquisition and Fire

Consider the following ways of assigning Blues to search for and engage Reds.

(A) Sectorization: Direct Fire

Consider Blue-force management first. At the beginning of period # assign B(5)/R(t)
distinct Blue shooters, a group of Blues, to each Red:; e.g. if B(t) = 200 and R(¢) = 100
then the first two Blues are assigned to the first Red, the second two Blues are assigned to
the second Red, etc. If fractions arise treat them as fractions of the time interval of
duration A.

Let Red forces engaging in sectorized direct (aimed) fire be assigned similarly:

R(5)/B(?) distinct Reds per individual Blue. Note that it is not necessary that each side be
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in the same firing mode. The objective of “direct fire” is to assign an equal number of

“shooters to each target, and not to allow random (e.g. equally likely and independent)
target picking. This is analogous to the “aimed or direct fire” protocol that leads to the
Lanchester Square Law.

Model the number of contacts/encounters by a Blue group with “its” Red during (7,
t+ h) as a Poisson process of rate Azr(B(t)/R(t)), where the encounter rate parameter Ap
can actually be a function of the period, ¢, and other variables; some can be decision or
control variables. At each encounter with “its” Red let the probability of kill be &gz,
independently of all other events. Therefore the kill process is effectively a marked
terminating Poisson process, and the probability that a particular Red avoids being
killed — survives — period ¢ is e~ *™(B(VR") Wwe make the convention that killed Reds are
removed at the end of the period (so they are available to search and shoot during the
period.

The same modeling assumption is adopted to describe a single Blue survivorship
probability: e %2 (R(:)/B(s))xsh

The above allows one to write down the one-step transition probabilities of a Ma;kov

chain {R(?), B(¢), t =0, h, 2h, ...} that is appropriate when the two opponents both are in

direct-fire mode.

P{R(1+h)=r,B(t+h)=bR(z), B(r)} =

r

(R(t))[e*m<B<'>/R<'>)m"]’ [1 - e-ﬂm(smm(r»mh]R")" 0<r<R()

% (Bét))[e—lm;(R(t)/B(t))K‘RBh]b [l_e—ﬂRB(R(t) B(t))K‘RBh:IB(I)—b 0< b < B(t)

It would be possible to refine the above to take account of the order in which Blues
and Reds are killed within (¢, z+ &), but at the cost of greater complexity than is

consistent with the present discrete-time model data, e.g. from COSAGE. We make the
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artificial convention that shot effects (kills) are resolved at the end of an interval, so Reds
and Blues alive until the end of period ¢ are alive and able to shoot until (t+ h)-, 1.e. the
instant before time period 7 + h starts. This convention could be changed, e.g. to have the
settle-up time be the middle of an interval, i.e. at ¢ + h/2, but this seems unnecessary and
is not done here.
Transition to “Continuous Time”’: Relation to Lanchester “Square Law”

It is seen from the form of each component of the Markov transition probability (A.3)

that the conditional means are
E[R(t + )|R(z), B(t)] = R(z)e™ "> (BOVR)cort (A4)
and
E[B(t+h)R(z). B(r)] = B(z)e e (ROVEO)xest (A.5)
If h — 0, so time intervals are short, then the two-term Taylor expansion prévides
E[R(t+1)|R(), B(t)) = R(:)[1- Za(B(t)/R(:))ic ek + o(r*)| (A.6)
which leads to the differential equation

d

—E[R()|R(). B(2)] = ~AeB(t)xor, (A7)

and (formally) removing conditions yields

dE|R(t
—[‘-i?(-)—] = —AsrE[B(1)]x 5z (A8)
which are precisely the form of the Classical Lanchester Square Law equations. The
boundary conditions E[R(#)] 2 0 and E[B()] = 0 must be imposed for correct solution.
Consequently, we argue that the deterministic fluid equations given earlier are a

consequence of this stochastic model, and an approximation to aspects of it. Furthermore,

variability can be assessed straightforwardly:



Var R+ YR(1). B(2)] =[ R(r)e 2 et ] X
and the entirely analogous equation for Var[B(t + h)IR(t),B(t)] .

Firing Options and Immediate (Imperfect) BDA

The model proposed can be easily implemented to study several firing options:
repeated, information affected shots at the same target; they can do so under the guidance
of local BDA conducted soon after a shot. Furthermore, the BDA can be rendered as
realistically error-afflicted. Incorporation of the various random effects (shot hits and
misses, BDA assessments, shot repetitions, repeated BDA, etc.).

For the present we model BDA effects at the unit engagement/shot level. The
information presumed used to guide subsequent shots is obtained at the time of shooting
(just following a shot); it may be provided by the shooter, e.g. from the actual shooting
ground unit, from a forward observer, or possibly from an air observer (UAV or helo) —
or combination thereof. Note that for what is done here the observers are assumed present
and connected to the shooter. This may not be so, but the effect of loss can be modeled in
various ways (not included here).

Here are some options.

(2) Every engagement involves a single shot, e.g. by Blue or Red. In this familiar
case we put kpg= Kpr(l) in basic attrition equations (A.3); here xpr(1), or izs(1), is a
single-shot kill probability. It should be regarded as conditional on as many influential
variables as are accessible.

(b) Every engagement requires or is ordered to fire (by doctrine) a single salvo of sz
shots. Then, simply, assuming independence, the effective engagement kill probability is
kgr=1—- (1 - Kpgp( 1))53 . Or there may be a pattern fired; if symmetrically placed, this
might be equivalent to &gz = 1 - (1 — fixBr(1)) (1 — f2k8r(1)) for sp = 2, where f; (= 0) and
Jf2 (20) are selected to “automatically” adjust to possible target movement. Again,

substitute into (A.3) or the equivalent and solve the equations.
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(c) Suppose engagements are quick-time sequences of Shoot, Look, Shoot (SLS)
with some termination rule (e.g. second shot is last). The “shot” is then a nearly
instantaneous random sequence of individual shots punctuated by brief effect
assessments, which are, unfortunately, potentially incorrect:

cpr(k) = P{Blue shot estimated to have killed Red target | Blue shot killed Red
target, or Red target dead; k means actually killed}

cpr(m) = P{Blue shot estimated to have killed Red target | Blue shot missed Red
target, or Red target alive; m means actually missed/alive}

Other needed probabilities can be obtained by complementation; let

Cor(k)=1-car(h), Tar(m)=1-cpp (m) . Now the resultant kill probability of (S,L,S) is

Kpr = K'BR(I)CBR(h)+ (1 - KBR(I))EBR (m)KBR(l) ;
the second shot is here assumed to have the same Kkill probability; it need not. The

expected number of shots of Blue vs. Red per engagement (kill, or not) is, under the

doctrine (S,L,S),

E[ﬁBR] = 1'K'BR(I)CBR(h)“I"z(l—K'BR(I)).
Another measure of effectiveness is the expected number of extra shots taken after a kill,
(if by Blue, epg) during/on a given engagement. This is, of course, the consequence of

imperfect BDA. In the S,L,S case this is

Elesr]=Cpr(h)
where this is just the probability that the second shot is unnecessary.

(B) Indirect/Area Fire
Suppose Blue conducts Indirect or Area Fire at Red units in a region. Model as

follows: a single Blue shooter’s “shot” (possibly a pattern or volley) makes a kill on each

Red unit independently with probability 77zz, so with probability 7jgr =1-7pg a

particular Red unit survives. It follows that if each Blue shoots according to a Poisson
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process with rate e that the particular Red unit survives that one Blue’s shot with
probability e *#*5 _and survives all of Blue’s area fire during (¢, t + ) with probability
e~5oRMarB() gince (by assumption) all Reds are equivalently available, the probability

distribution of surviving Reds is binomial

r R(t)-r
P{R(-+4) =riB() R} = (X [ersmenmO] [y stmmno 7,
Under the previous assumptions, e.g. of (A), a similar expression holds for B(t + h). The
conditional one-step transition probabilities are independent, so we arrive at system

transition probability expressions quite analogous to that for (A.3) above. The one-step

transition probabilities appropriate if each side is exchanging area fire is
P{R(t+h)=r,B(t+h)=b|R(), B(1)} =

(R(t))[e‘fskhﬂskl?(r)]r [1 _ e“fskhﬂBRB(t)]R(')_’

r

X (Blgt))[e‘fkshﬂkeB(t) ]b [1 _ e"fRBhﬂRBB(t)]B(t)‘b

Note: It is perfectly possible to have one side, Blue, say, attack Red using area fire, while
Red attacks Blue using direct fire, or to start with all indirect fire, and transition to direct
fire as time increases and range decreases. Combinations of various sorts can be modeled,

and the results analyzed.
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Appendix B
Variability/Uncertainty Assessment

In actual COSAGE evolutions there are several replications (e.g. r = 16) made, and

the results eventually averaged to get what we have called the data values ki (jr»JB:2)

andk(jg, jr;2). These can be directly used to point-estimate the probability of survival
K (x,y; 1), and also R(j: #), B(js; 1), t =0, h, 2h, ..., 17h, ...

In the most accessible documentation the kill data is summarized by mean and
(estimated) variance:

1 -
k(x, y;2)= ;z k(x, y:2)=k(x, y:2) (B.1,a)

i=]

R 1 ¢ - 2
var[k(x,y:2)] = 7——12[k,-(x, y:2)—k(x,y:2)] . (B.1,b)
L=l
Similar data are available for the number of weapons fired.
A simple computational way of checking for the stability/sampling variability of the
results used for predicting (mean) survivors on each side is to (1) re-sample each k-value
from a normal or Gaussian distribution N (I? , vér[k(x, y;2)]), where r is the number of

independent and identical (by assumption) replications (e.g. 16), and use the result(s) to
estimate 'IAE(x, y;2h) from (4.10) and (4.18); then (ii) apply this outcome as survival
parameters in equations (4.10) and (3.3 a&b); repeat this independently ~ 50 times at ¢ =
4, 8, 10, 12 and examine the results (compute R(jr;mh), B(js;lh), m, 1= 0, 1,
2,...,31, ..., and the respective variances and standard deviations). This approach is a
way of quantifying the uncertainty in a mean or deterministic approximation. It may be of

interest to use as a “certainty equivalent” as part of the process a lower confidence level

(roughly R(jr;2;)—2+var R , or, possibly better, a value obtained by bootstrapping.

48




Appendix C
Models for Direct and Indirect Fire

For simplicity assume there is one type of Red target and one type of Blue platform
firing one type of Blue weapon. Let R(0) be the initial number of Red targets and B(0) be
the initial number of Blue platforms. COSAGE summary data contain the averages of
various measures over 16 replications of simulations for 2 days of combat of Red and
Blue combatants in various postures.

Aimed (or Direct) Fire Weapons
For aimed (direct fire) fire weapons, COSAGE summary data contain the average

number of kills and the average number of shots fired over the r = 16 replications. Let

S(0), (respectively S(0)), be the total, (respectively average), number of shots over the 16
replications. $(0) =165(0). Let K(0), (respectively K (0)), be the total, (respectively
average), number of kills over the 16 replications. Each aimed fire weapon is shot at one

Red target. Let A(j) be equal to 1 if the /™ shot kills the target and O otherwise.

S(0)

K(©0) = Z,A(f)
E[K©0)]=50)x,(d)

Thus an estimate of the probability of kill for an aimed fire weapon is

£ (d)=XOQ _K©

S(0)  S(0)
Now to avoid having to estimate a kill probability as 0 owing to small sample luck we
replace £, (d)= i;(%) = % by a Bayes estimate that assume kills are binomial with S

trials and applies a uniform prior; the result is the estimate of kill
I%W(d;b)=K(0)+1=I_{(O)+(1/r)
SO)+2 SO)+2/r)

where r is the number of replications, e.g. 16.
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To estimate the probability a particular Red survives all S shots, we assume that the

number of shots fired at a particular Red over the r = 16 replications is —(—I? SI(QO) .
r

Thus, the probability a particular Red survives all the shots is
5 K©)+1/r)]T "
Keld)=|1- ===
S©)+(2/r)
The rate of shooting per Blue over the 48-hour period of COSAGE.
5(0)
d)=—-=
An equation to compute the average number of Reds that survive aimed (direct) fire
during the time interval (¢, ¢ + 4] is

K©)+(/r)

p(d)rB(1)/R(r)
S(0)+ (2/r)]

R(r+1)= RO, (d) = R(z){l

An estimate of the average number of aimed fire weapons shot by one Blue platform

against Red targets is S(0)/B(0). Assuming an infinite supply of Red targets, an estimate

of the expected rate of kill by one Blue platform against Red targets is

ple)= (Sloy 50} £ 00

Indirect or Area Fire Weapons

COSAGE summary data record the average number of Red targets that are affected by
the indirect fire shots. Let NA0) (respectively N 7 (0)) be the total (respectively average)

number of Red targets affected by the S(0) (respectively E(O)) indirect (area fire)
(respectively average) fire shots. N (0= rN (0)= 16N +(0) Let Ii(j; a; f) be equal to 1 if

the /™ indirect weapon shot affects the jth Red target and be equal to 0 otherwise.

S R
N, =ZZI: ja.f)

i=l j=
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Let X; be equal to 1 if the /™ Red target affected by an indirect weapon shot is killed by
the weapon and 0 otherwise. The number of Red targets killed by indirect (area) weapon
shots is
N0 S(0)R(0)
KO)= 3 X,=3 Y L(jiak)
i=l i=l j=l
where I(j; a; k) is equal to 1 if the i™ indirect (area) weapon shot kills the j Red target
and is O otherwise.
N,(® S R
E[KO)=E[ Y X,)=E[> Y I(j;a:k)l = SORO)x,(a)
i=1 i=1 j=I
Thus an estimate of the probability an indirect weapon shot kills a Red target is
¢ (@)=KO___KO©
S(O)R(0) SR

where K (0) is the average number of Red targets killed over the r COSAGE replications.

To avoid having to estimate a kill probability as 0 owing to small sample luck we

replace &,(a)= KO __ _K(O) by a Bayes estimate that assumes Kkills are
SO)R0) S(OR(0)

binomial with S(0)R(0) trials and applies a uniform prior; the result is

2 (a:b)= KO+l _ K©O+(/r)
" S(O)R(0)+2  S(O)R(O0)+(2/r)

Estimate the number of shots taken over a single COSAGE replication as S (0). The

probability a particular Red survives all S(0) indirect shots is estimated as

2 )=[1— KO +(1/r) JS

5 S(O)R©O)+(2/r)

The average number of indirect fire shots fired per Blue over the initial 48-hour

period of COSAGE is
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5(0)

pla)= 30)

An equation to compute the average number of Reds surviving all the indirect fire

- shotsin (z, t + h] is

K(0)+(1/r)

R(t+h)= R(t)_lz_'(a) = R(’)l:l - S(0)R(0)+(2/r)

The expected number of Reds killed by indirect fire shots during (z, 7 + k] is

Dg(t+h)=R(e)1- ?R (a)] = R(t{l _[1 _ K©)+(1/r) )Jp(“)hB(t):,

Jpw)w(r)

S(O)RO)+(2/r
The average number of indirect weapons fired by each Blue at Red targets is
S(0)/B(0). Assuming an infinite supply of Red targets, an estimated average rate at

which one Blue platform using area fire weapons kills Red targets is during the first 48

hour period modeled by COSAGE is

5(0) K@©y+(/r) y K©O)+(1/r)
(a;O) = = = (a, =
B(0) S(0)R(0)+(2/r) S(0)R(0)+(2/r)

The estimated average rate at which one Blue platform using area fire weapons kills Red
targets during (z, t + A] is

K©)+(1/r)
S(O)R(0)+(2/r)

S(a;t)= pla)h

Example 1:
UHI155Z firing area fire munition M483A1 at platform RINTP

Given: Initial number of RINTP = 11068
Initial number of UH155Z = 144

Average total number of indirect shots S (j,,w,) = 26318

Observed number of kills Kyz(j,, Wy, jz) = 509.56
Number of Replications = 16

Bayes probability of kill for a single shot
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1
= 509.56 +—
e (ap)=KF1 _ K+(/r) _ 1

= == = = 1.74955E - 06
SR+2 SR+(2/r) (26318*11068)+(2/16)

The probability a Target survives all shots is

— s

gxla)= - K+Ur) © [1-1.74955E — 06" = 954999
SR+(2/r)

The estimated average number killed in 48 hours is

(# targets)x[ 1~ gg(a)] = 11068 x (1-.954999) = 498.0682

which is close to the COSAGE number of 509.56.

Example 2:
UH155Z firing area fire munition M483A1 at platform ROPR7

Given: Initial number of ROPR7 = 7560
Initial number of UH155Z = 144

Average total number of indirect shots Sg(j,,w,) = 26318
Observed number of kills K. (j,,w,, jz) =416.62
Number of Replications = 16

Bayes probability of kill for a single shot

1
7d 416.62 +—
e (ap)= KL K+(U/r) _

- (a;b) = == = = 2.09426E - 06
SR+2 SR+(2/r) (26318+%7560)+(2/16)

The probability a Target survives all shots is
K+(1/r) ’
gpla)=|1-=——c""L | =[1-2.09426E — 06" = 946375
SR+(2/r)

The estimated average number killed in 48 hours is

(# targets)x[1—gr(a)] = 11068 x (1-.946375) = 4054079

which is close to the COSAGE number of 416.62.
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Appendix D
ATCAL-Like Firing Rate Model

Versions of ATCAL (abbreviation of An Attrition Model Using Calibrated
Parameters) Modeling in DISC-O-TIC Style

About twenty years ago, in the early 1980s, the Army, through efforts at the then
Combat Analysis Agency (now Center for Army Analysis) or CAA, developed An
Attrition Model Using Calibrated Parameters, or ATCAL: “a new method for calibrating
a set of attrition equations to the results of sample high-resolution simulations.” The
algorithm developed is a set of attrition equations for “point” (we call it direct) and “area”
(we call it indirect) fire; their algorithm (equations) computes losses by cause (round, or
ammunition type), using high-resolution simulation data, as we have done earlier in this
paper; thus ATCAL parameters are estimated from high-resolution data, as are ours.
ATCAL does recognize target “availability” e.g. visibility, in a simplified probabilistic
manner, and also target priorities: such priorities are governed by intrinsic importance to a
shooter, but also are higher for those more easy to kill than other available targets. For the
present, DISC-O-TIC does not go to such explicit lengths because of limits in COSAGE
data available. However, ATCAL does not attempt to model the time-step-evolution or
dynamics of combat, whereas DISC-O-TIC does, as seen above. ATCAL seems to
assume, rather specifically, that the forces decrease exponentially with the duration of a
battle, which is an effect that occurs if one reasonably assumes that fire allocation to a
target type should decrease as the number of such targets is decreased.

‘Here is a way of adjusting firing (actually acquisition rate) in DISC-O-TIC to achieve
the above effect.

Replace the acquisition rate per shooter in Classical Survival Model 1, nsy(*, js,ws; Jjo)

by a time-dependent rate, niy(s, js,ws; jo,t); here S denotes Shooter type, and Q is
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quarry/target type; if S is Red then the Q is Blue, and vice versa. Total shooting rate per

quarry is, after replacement
ngQ(.’jS’Ws;jQ,t)S(jS’WS,I)/Q(jQ,t) (D.1)

total killing rate per quarry is

nfo(, s, ws; jo.t)(In(€s0))S(js, ws ,t)/ OJjo-1). (D.2)

Now suppose the shooting rate is actually modified by the factor in square brackets:

# . e Q( ]Q ’ t) . . . L.
nso(e, js. ws; jo.t) = [_—_S(js Ws. 1) Fso(Js,ws, jo) ?SQ(',JS,WS, JQ)
< S g >shooting rate‘:ieduced from
correction term that reduces (0,2/] COSAGE data and
total Shooting rate if Direct Fire Model 1 (D3)
Quarry/Shooter ratio decreases
: . . .y Qjo1)
=nso(*, js,ws; jo) fso(Js-ws; jo) o=
S (Js s Ws, 1t )

Jso(s, ws; jo) is here a constant to be determined.

This particular form of the Shooter-Quarry rate, if applied acréss all shooter options
leads to geometric decline of the Quarry forces in time although not necessarily at the
same rate by type. Prioritization by type can be achieved by adjustment of the tuning
constant, fso: it can be replaced by fso(js, ws; jo)-

Given the shooting rate per period we get for Model 1 and the ATCAL-like rule,

O(jo.t+h)= Q(anf)eXP[ZZ"SQ(”fs,Ws;J'Q)IHESQ(J'S,Ws;fQ)fSQ(fS’WS?jQ)] D4
Js ws TN
= 0(Jjo.1)Coljo)
S0
O(jo-t)=0(jo.0) Coljo)| (D.5)
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To compute the expenditure of ws-type weapons/munitions up to the end of time period ¢
it is necessary to sum expenditures during each period: if M(wg; 1) is the expenditure of

wg through period ¢,

M(wp:1) =zt‘.Zzn?Q(’,js,Ws?J'QJ)“E%;”—?)"Q(J'Q”)

x=1 js jo

=2 2 Xinso(® Jss ws: jo)fsol is»ws: jo)Q(jo. %) (D.6)

x=1 js Jjo
!
= ZZ”SQ(':jS’WS;jQ)fSQ(jSaWS;jQ) Y 0(jo,x)
Js Jo x=1
The function fso(js, ws; jo) is a potentially arbitrary control function. It follows from
(D.5) that one way to determine its value is to use the initial COSAGE data; let the
COSAGE Shooter-weapon-specific (js, ws) number of survivors of Quarry type jo be
q(is:ws; o, 2h).
Then, replacing fso by its estimate fSQ from available COSAGE data,
q(Jjs,ws; jg.2h) = q(js.ws; jo.0) exp[n(o,js,ws;jQ)ln Ksofso(js,ws; jQ)] . (D7)

Now solve for the initial-data-driven value fgp:

= /. . 1 q(js,ws; jo.2h)
Fsoljsws; jo)=—— —— — Inf —— . . (D38)
sols»ws: Jo) (s, js,ws; jo)InKso(js.ws; jo) (Q(JSaWS;]Q,O)

In the special case when

@  g(Js,ws; jo.2h) = g(js,ws; jo,0), then we put fso(Js-ws; jo) = S(Js,0);

(b) q(js,ws; jo,2k)=0, then we put fso(Js»ws; jo)=S(js,0) for the initial time
period and then O for the other time periods; and the expenditure of munitions

. ) nSQ(.’jSoWS;jQ)S(js ,O) fort=2h
M(JS7WS;]Q,t) =
0 for 1 > 3h
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Discussion. Our basic survival model (D.4) and (D.5) is a consequence of the Shooter
being able to perceive his own and the quarry force types and sizes perfectly at each time
which is manifestly highly optimistic. Sensitivity to this assumption can be studied if only
by simulation. This is left for future work.

No particular reason has been given for adjusting acquisition/shooting rate to
achieve (nearly precise) geometric/exponential decrease, presumably but not necessarily
on both sides. This choice does drive the quarry force size down while limiting munition
expenditures, but there are other variations possible in the acquisition/firing rates worth
exploration; one or more of these might provide superior results from some standpoint;
they should be investigated and clarified in later work.

If more detailed output from COSAGE (or other such high-resolution models)
were available, it could be possible to add additional detail to our meta-model,
DISCOTIC, that would provide greater insight into choice of suitable
acquisition/shooting rates. Also, the cost effectiveness of surveillance, e.g. by helicopter,
could be studied by meta-modeling. Such studies could effectively guide future high-
resolution model (e.g. COSAGE, but not exclusively) runs, and provide the present

models with greater modern detail.
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Appendix E

Weapon reallocation
Weapon platforms will fire the same type of munitions at several types of targets. As
target platforms are attrited during combat, weapon platforms will re-allocate their fires
among the surviving platforms. One perhaps overly simple re-allocation algorithm is to
reallocate based on the original proportion of one kind of weapon fired at each type of
target; Washburn (2000). In particular, the number of weapons of type wp fired by

platforms of type jp at targets of type jr during the time interval (t, t+h] under this re-
allocation algorithm is

1 Nsr(js,ws. jr,2h)I(R(jr,t)>1)
h zNBR(jB,wB,jR,2h)I(R(jR,t)> 1)

JR

where [ (R( Jjrot)> 1):1 if R(jg,t)>1 and O otherwise. This reallocation algorithm has

Nix(je.ws, jr,t +h)— Ngr(jg,wg, jr.t) = (E.1)

the effect of focusing the firing of weapons of this type on the remaining target platforms.

It ignores possible delays in target acquisition as the number of target platforms dwindles.
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